10,325 research outputs found

    What we don't know about time

    Full text link
    String theory has transformed our understanding of geometry, topology and spacetime. Thus, for this special issue of Foundations of Physics commemorating "Forty Years of String Theory", it seems appropriate to step back and ask what we do not understand. As I will discuss, time remains the least understood concept in physical theory. While we have made significant progress in understanding space, our understanding of time has not progressed much beyond the level of a century ago when Einstein introduced the idea of space-time as a combined entity. Thus, I will raise a series of open questions about time, and will review some of the progress that has been made as a roadmap for the future.Comment: 15 pages; Essay for a special issue of Foundations of Physics commemorating "Forty years of string theory

    Drag reduction effects in turbulent boundary layers over wavy walls

    Get PDF
    Two dimensional incompressible flow over wavy surfaces are analyzed numerically by spectral methods. Algorithms for periodic flows (Fourier modes in the periodic flow direction and Chebycheff modes in the normal direction), and inflow-outflow boundary conditions (Chebycheff modes used in both directions) are described. Results obtained using both codes are reported for laminar flows. Comparisons with known theoretical and experimental results are made

    Numerical studies of laminar and turbulent drag reduction

    Get PDF
    Two-dimensional incompressible flow over wavy surfaces is studied numerically by spectral methods. Turbulence effects are modeled. Results for symmetric and asymmetric wave forms are presented. Effect of propagating surface waves on drag reduction is studied. Comparisons between computer simulations and experimental results are made

    Numerical studies of laminar and turbulent drag reduction, part 2

    Get PDF
    The flow over wave shaped surfaces is studied using a Navier Stokes solver. Detailed comparisons with theoretical results are presented, including the stability of a laminar flow over wavy surfaces. Drag characteristics of nonplanar surfaces are predicted using the Navier-Stokes solver. The secondary instabilities of wall bounded and free shear flows are also discussed

    Spacetime and the Holographic Renormalization Group

    Get PDF
    Anti-de Sitter (AdS) space can be foliated by a family of nested surfaces homeomorphic to the boundary of the space. We propose a holographic correspondence between theories living on each surface in the foliation and quantum gravity in the enclosed volume. The flow of observables between our ``interior'' theories is described by a renormalization group equation. The dependence of these flows on the foliation of space encodes bulk geometry.Comment: 12 page
    corecore